If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2+9k=0
a = 4; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·4·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*4}=\frac{-18}{8} =-2+1/4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*4}=\frac{0}{8} =0 $
| 0=2x^2+12x-1040 | | 7+m/3=12 | | p+4p+2p+5p= | | -x+228=21 | | 2-8x=138 | | 3x^2-5x-3=-3.6x+3 | | −42=3x | | x+6.91=8.41 | | w^2-3w-24=0 | | 2x+8-6x=-32 | | w+1.19=6.64 | | 27.75n+5.50=138.25 | | −a−9=a+19 | | 6x+6x+1/3=-594/5 | | −p−9=p+17 | | 247-y=168 | | u-8.31=4.2 | | r-19.5=-4.4 | | 5x=44-1 | | x+1+x+3=180 | | 2x+81=69 | | 3-5x=7-9x | | 7x+9=5x+3+5x | | d^2-9d+9=0 | | -8^(2x+6)=64 | | 5x-16=3x-2 | | -8^2x+6=64 | | 8x+-6-2x=34 | | -11=25-45z | | d^2−9d+9=0 | | k=1/4 | | 4x=28;x= |